Diagnosis and precise localization of cardiomegaly disease using U-NET

This study examines an end-to-end technique which uses a Deep Convolutional Neural Network U-Net based architecture to detect Cardiomegaly disease. The learning phase is achieved by using Chest X-ray images extracted from the “ChestX-ray8” open source medical dataset. The Adaptive Histogram Equaliza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatics in medicine unlocked 2020, Vol.19, p.100306, Article 100306
Hauptverfasser: Bouslama, Abdelilah, Laaziz, Yassin, Tali, Abdelhak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examines an end-to-end technique which uses a Deep Convolutional Neural Network U-Net based architecture to detect Cardiomegaly disease. The learning phase is achieved by using Chest X-ray images extracted from the “ChestX-ray8” open source medical dataset. The Adaptive Histogram Equalization (AHE) method is deployed to enhance the contrast and brightness of the original images. These latter are compressed before undergoing a training stage to optimize computation time. By this method, we obtained a diagnostic accuracy greater than 93%, which outperforms published results for recognizing Cardiomegaly disease. In addition, with U-Net, precise localization of Cardiomegaly is possible, which is not the case in previous works.
ISSN:2352-9148
2352-9148
DOI:10.1016/j.imu.2020.100306