Potential Candidate Molecule of Photosystem II Inhibitor Herbicide-Brassicanate A Sulfoxide
Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfo...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-02, Vol.25 (4), p.2400 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfoxide and the photosystem II D1 protein through molecular docking and molecular dynamics simulations. This research demonstrates that brassicanate A sulfoxide interacts with the photosystem II D1 protein by forming hydrogen bonds with Phe-261 and His-214. The successful expression of the photosystem II D1 protein in an insect cell/baculovirus system validated the molecular docking and dynamics simulations. Biolayer interferometry experiments elucidated that the affinity constant of brassicanate A sulfoxide with photosystem II was 2.69 × 10
M, suggesting that brassicanate A sulfoxide can stably bind to the photosystem II D1 protein. The findings of this study contribute to the understanding of the mode of action of brassicanate A sulfoxide and also aid in the development of natural-product-based photosynthesis-inhibiting herbicides. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25042400 |