Normalizing and Converting Image DC Data Using Scatter Plot Matching

Remote sensing image data from sources such as Landsat or airborne multispectral digital cameras are typically in the form of digital count (DC) values. To compare images acquired by the same sensor system on different dates, or images acquired by different sensor systems, it is necessary to correct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2010-07, Vol.2 (7), p.1644-1661
Hauptverfasser: Maas, Stephan J., Rajan, Nithya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remote sensing image data from sources such as Landsat or airborne multispectral digital cameras are typically in the form of digital count (DC) values. To compare images acquired by the same sensor system on different dates, or images acquired by different sensor systems, it is necessary to correct for differences in the DC values due to sensor characteristics (gain and offset), illumination of the surface (a function of sun angle), and atmospheric clarity. A method is described for normalizing one image to another, or converting image DC values to surface reflectance. This method is based on the identification of pseudo-invariant features (bare soil line and full canopy point) in the scatter plot of red and near-infrared image pixel values. The method, called “scatter plot matching” (SPM), is demonstrated by normalizing a Landsat-7 ETM+ image to a Landsat-5 TM image, and by converting the pixel DC values in a Landsat-5 TM image to values of surface reflectance. While SPM has some limitations, it represents a simple, straight-forward method for calibrating remote sensing image data.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs2071644