A Greedy Ant Colony System for Defensive Resource Assignment Problems
The weapon-target assignment (WTA) problem is crucial for strategic planning in military decision-making operations. It defines the best way to assign defensive resources against threats in combat scenarios. This is a NP-complete problem where no exact solution is available to deal with all possible...
Gespeichert in:
Veröffentlicht in: | Applied artificial intelligence 2018-04, Vol.32 (2), p.138-152 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The weapon-target assignment (WTA) problem is crucial for strategic planning in military decision-making operations. It defines the best way to assign defensive resources against threats in combat scenarios. This is a NP-complete problem where no exact solution is available to deal with all possible scenarios. A critical issue in modeling the WTA problem is the time performance of the developed algorithms, subject only recently contemplated in related publications. This paper presents a hybrid approach which combines an ant colony optimization with a greedy algorithm, called the Greedy Ant Colony System (GACS), in which a multi colony parallel strategy was also implemented to improve the results. Aiming at large scale air combat scenarios, simulations controlling the algorithm time performance were executed achieving good quality results. |
---|---|
ISSN: | 0883-9514 1087-6545 |
DOI: | 10.1080/08839514.2018.1451137 |