Effects of systematically varied thiourethane-functionalized filler concentration on polymerization behavior and relevant clinical properties of dental composites

Introduction of thiourethane (TU) oligomer to resin-based dental restorative materials reduces stress and improves fracture toughness without compromising conversion. Localization of TU at the resin-filler interface via silanization procedures may lead to more substantial stress reduction and clinic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2021-01, Vol.197, p.109249, Article 109249
Hauptverfasser: Lewis, S.H., APP, Fugolin, Lam, S., Scanlon, C., Ferracane, J.L., Pfeifer, C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction of thiourethane (TU) oligomer to resin-based dental restorative materials reduces stress and improves fracture toughness without compromising conversion. Localization of TU at the resin-filler interface via silanization procedures may lead to more substantial stress reduction and clinical property enhancements. The objective of this study was to evaluate composite properties as a function of TU-functionalized filler concentration. TU oligomers were synthesized using click-chemistry techniques and subsequently silanized to barium glass filler. Resin-based composites were formulated using varying ratios of TU-functionalized filler and conventional methacrylate-silanized barium filler. Material property testing included thermogravimetric analysis, real-time polymerization kinetics and depth of cure, polymerization stress, stress relaxation and fracture toughness. Clinical property testing included water sorption/solubility, composite paste viscosity, and gloss and surface roughness measured before and after subjecting the samples to 6 h of continuous tooth brushing in a custom-built apparatus using a toothpaste/water mixture. Increasing TU-filler in the composite resulted in as much as a 78% reduction in stress, coupled with an increase in fracture toughness. Conversion was similar for all groups. After simulated tooth brushing, gloss reduction was lower for TU-containing composites and surface roughness was less than or equal to the control. [Display omitted] •The surface of conventional silica-based dental fillers was systematically functionalized with novel thiourethane oligomers.•Incorporation of thiourethane-modified fillers dramatically reduced polymerization stress and uniformly increased composite fracture toughness.•Thiourethane-modified composites demonstrated reduced surface roughness and lower gloss reduction after simulated toothbrushing.
ISSN:0264-1275
1873-4197
DOI:10.1016/j.matdes.2020.109249