Investigation of metabolic pathways from gut microbiome analyses regarding type 2 diabetes mellitus using artificial neural networks

Background Type 2 diabetes mellitus is a prevalent disease that contributes to the development of various health issues, including kidney failure and strokes. As a result, it poses a significant challenge to the worldwide healthcare system. Research into the gut microbiome has enabled the identifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discover Artificial Intelligence 2023-12, Vol.3 (1), p.19-9, Article 19
Hauptverfasser: Siptroth, Julienne, Moskalenko, Olga, Krumbiegel, Carsten, Ackermann, Jörg, Koch, Ina, Pospisil, Heike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Type 2 diabetes mellitus is a prevalent disease that contributes to the development of various health issues, including kidney failure and strokes. As a result, it poses a significant challenge to the worldwide healthcare system. Research into the gut microbiome has enabled the identification and description of various diseases, with bacterial pathways playing a critical role in this context. These pathways link individual bacteria based on their biological functions. This study deals with the classification of microbiome pathway profiles of type 2 diabetes mellitus patients. Methods Pathway profiles were determined by next-generation sequencing of 16S rDNA from stool samples, which were subsequently assigned to bacteria. Then, the involved pathways were assigned by the identified gene families. The classification of type 2 diabetes mellitus is enabled by a constructed neural network. Furthermore, a feature importance analysis was performed via a game theoretic approach (SHapley Additive exPlanations). The study not only focuses on the classification using neural networks, but also on identifying crucial bacterial pathways. Results It could be shown that a neural network classification of type 2 diabetes mellitus and a healthy comparison group is possible with an excellent prediction accuracy. It was possible to create a ranking to identify the pathways that have a high impact on the model prediction accuracy. In this way, new associations between the alteration of, e.g. a biosynthetic pathway and the presence of diabetes mellitus type 2 disease can also be discovered. The basis is formed by 946 microbiome pathway profiles from diabetes mellitus type 2 patients (272) and healthy comparison persons (674). Conclusion With this study of the gut microbiome, we present an approach using a neural network to obtain a classification of healthy and type 2 diabetes mellitus and to identify the critical features. Intestinal bacteria pathway profiles form the basis.
ISSN:2731-0809
2731-0809
DOI:10.1007/s44163-023-00064-6