Multi-Label Classification of E-Commerce Customer Reviews via Machine Learning

The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2022-08, Vol.11 (9), p.436
Hauptverfasser: Deniz, Emre, Erbay, Hasan, Coşar, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is continuously increasing, which enables new studies to be carried out and important findings to be obtained with more detailed analysis. Nowadays, e-commerce customer reviews are analyzed by both researchers and sector experts, and are subject to many sentiment analysis studies. Herein, an analysis of customer reviews is carried out in order to obtain more in-depth thoughts about the product, rather than engaging in emotion-based analysis. Initially, we form a new customer reviews dataset made up of reviews by Turkish consumers in order to perform the proposed analysis. The created dataset contains more than 50,000 reviews in three different categories, and each review has multiple labels according to the comments made by the customers. Later, we applied machine learning methods employed for multi-label classification to the dataset. Finally, we compared and analyzed the results we obtained using a diverse set of statistical metrics. As a result of our experimental studies, we found the Micro Precision 0.9157, Micro Recall 0.8837, Micro F1 Score 0.8925, and Hamming Loss 0.0278 to be the most successful approaches.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms11090436