Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces
In this paper, we solve the additive $ \rho $-functional inequalities:where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequa...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2021, Vol.6 (2), p.1905-1919 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we solve the additive $ \rho $-functional inequalities:where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we also prove the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021116 |