Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces

In this paper, we solve the additive $ \rho $-functional inequalities:where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2021, Vol.6 (2), p.1905-1919
Hauptverfasser: Wang, Zhihua, Park, Choonkil, Yun Shin, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we solve the additive $ \rho $-functional inequalities:where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we also prove the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021116