Optimization of Number of GCPs and Placement Strategy for UAV-Based Orthophoto Production

Unmanned aerial vehicles (UAVs) have been employed to perform aerial surveys in many industries owing to their versatility, relatively low cost, and efficiency. Ground control points (GCPs) are used for georeferencing to ensure orthophoto geolocation/positioning accuracy. In this study, we investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-04, Vol.14 (8), p.3163
Hauptverfasser: Seo, Dong-Min, Woo, Hyun-Jung, Hong, Won-Hwa, Seo, Hyuncheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unmanned aerial vehicles (UAVs) have been employed to perform aerial surveys in many industries owing to their versatility, relatively low cost, and efficiency. Ground control points (GCPs) are used for georeferencing to ensure orthophoto geolocation/positioning accuracy. In this study, we investigate the impact of the number and distribution of GCPs on the accuracy of orthophoto production based on images acquired by UAVs. A test site was selected based on regulatory requirements, and several scenarios were developed considering the specifications of the UAVs used in this study. The locations of GCPs were varied to obtain the results. Based on the results obtained for different numbers of GCPs per unit area and distribution of GCPs, it is shown that UAV-based platforms can be more extensively utilized in a range of applications. The findings of this study will significantly impact the development process of GCP automation algorithms and enable a more cost-effective approach when determining target sites for UAV-based orthophoto production.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14083163