Semi-classical states for Schrodinger-Poisson systems on R^3
In this article, we study the nonlinear Schrodinger-Poisson equation $$\displaylines{ -\epsilon^2\Delta u+V(x) u+\phi(x)u=f(u), \quad x\in{\mathbb{R}^3}, \cr -\epsilon^2\Delta\phi=u^2,\quad \lim_{|x|\to\infty}\phi(x)=0\,. }$$ Under suitable assumptions on V(x) and f(s), we prove the existence of gro...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2016-03, Vol.2016 (75), p.1-15 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the nonlinear Schrodinger-Poisson equation $$\displaylines{ -\epsilon^2\Delta u+V(x) u+\phi(x)u=f(u), \quad x\in{\mathbb{R}^3}, \cr -\epsilon^2\Delta\phi=u^2,\quad \lim_{|x|\to\infty}\phi(x)=0\,. }$$ Under suitable assumptions on V(x) and f(s), we prove the existence of ground state solution around local minima of the potential V(x) as $\epsilon\to 0$. Also, we show the exponential decay of ground state solution. |
---|---|
ISSN: | 1072-6691 |