Cloning of Hynobius lichenatus (Tohoku hynobiid salamander) p53 and analysis of its expression in response to radiation

Caudata species such as salamanders are easily affected by environmental changes, which can drastically reduce their population. The effects of acute X-rays and chronic γ-irradiation on Hynobius lichenatus, the Japanese Tohoku hynobiid salamander, are known. However, the expression of radiation-indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genetics 2020-05, Vol.21 (1), p.53-14, Article 53
Hauptverfasser: Kamada, Toshiki, Une, Yumi, Matsui, Kumi, Fuma, Shoichi, Ikeda, Teruo, Okamoto, Mariko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caudata species such as salamanders are easily affected by environmental changes, which can drastically reduce their population. The effects of acute X-rays and chronic γ-irradiation on Hynobius lichenatus, the Japanese Tohoku hynobiid salamander, are known. However, the expression of radiation-inducible genes, such as the DNA-damage checkpoint response gene p53, has not been analyzed in H. lichenatus. This has not occurred because there is no established method for mRNA quantification in H. lichenatus due to a lack of information on available nucleotide sequences corresponding to both radiation-inducible genes and endogenous control genes such as ACTB (β-actin). In this study, we aimed to evaluate the effects of radiation on gene expression in H. lichenatus. Using RNA extracted from irradiated salamanders, we performed rapid amplification of cDNA ends (RACE) and cloned H. lichenatus β-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53. We confirmed that the cloned cDNAs were able to synthesize salamander proteins by western blotting after transfection into cultured HEK293 cells. Proliferation assays using HEK293 cells stably expressing H. lichenatus p53 protein showed that this protein has antiproliferative effects, similar to that of mammalian p53. Furthermore, RT-qPCR analysis using gene-specific primers revealed that p53 mRNA expression in H. lichenatus was upregulated upon exposure to radiation. Our results suggest that H. lichenatus p53 protein take an important role in regulating the cellular responses to various stimuli as mammalian p53 does. Furthermore, our study provides novel data to select appropriate primers to analyze internal control mRNA expression in H. lichenatus and to evaluate p53 expression as a marker of radiation and environmental stimuli.
ISSN:1471-2156
1471-2156
DOI:10.1186/s12863-020-00856-0