Compressive Sensing-Based Secure Uplink Grant-Free Systems
Compressive sensing (CS) has been extensively employed in uplink grant-free communications, where data generated from different active users are transmitted to a base station (BS) without following the strict access grant process. Nevertheless, the state-of-the-art CS algorithms rely on a highly lim...
Gespeichert in:
Veröffentlicht in: | Frontiers in signal processing (Lausanne) 2022-02, Vol.2 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compressive sensing (CS) has been extensively employed in uplink grant-free communications, where data generated from different active users are transmitted to a base station (BS) without following the strict access grant process. Nevertheless, the state-of-the-art CS algorithms rely on a highly limited category of measurement matrix, that is, pilot matrix, which may be analyzed by an eavesdropper (Eve) to infer the user’s channel information. Thus, the physical layer security becomes a critical issue in uplink grant-free communications. In this article, the channel reciprocity in time-division duplex systems is utilized to design environment-aware (EA) pilots derived from transmission channels to prevent eavesdroppers from acquiring users’ channel information. The simulation results show that the proposed EA-based pilot approach possesses a high level of security by scrambling the Eve’s normalized mean square error performance of channel estimation. |
---|---|
ISSN: | 2673-8198 2673-8198 |
DOI: | 10.3389/frsip.2022.837870 |