Dynamic Layout Design Optimization to Improve Patient Flow in Outpatient Clinics Using Genetic Algorithms

Evolutionary algorithms, such as genetic algorithms have been used in various optimization problems. In this paper, we propose to apply this algorithm to obtain the layout design/redesign in order to improve the patient flow in an outpatient clinic. Layout designs are planned considering long-term r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms 2022-03, Vol.15 (3), p.85
Hauptverfasser: Munavalli, Jyoti R., Rao, Shyam Vasudeva, Srinivasan, Aravind, Van Merode, Frits
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolutionary algorithms, such as genetic algorithms have been used in various optimization problems. In this paper, we propose to apply this algorithm to obtain the layout design/redesign in order to improve the patient flow in an outpatient clinic. Layout designs are planned considering long-term requirements whereas the layout keeps modifying as per short-term demands. Over a period of time, the layout often does not remain efficient. Therefore, there is a need for such a model that helps in decision making on layout redesigns, and it must also optimize workflow by incorporating the flow constraints. In this study, we propose to minimize the waiting times by obtaining optimal and sub-optimal layout designs. A genetic algorithm is implemented to redesign the layouts based on the changing dynamics of patient demand, clinical pathways and services offered. The workflow is simulated with current layout and optimized layouts, and the results in terms of waiting time and cycle time are compared. The study shows that when layout design or redesign incorporate the workflow and pathways along with associated constraints, improves waiting time and cycle time of patients in the outpatient clinic. The distance between the departments/locations is translated to travelling time and overall travel distance/time is minimized by rearranging the allocations of departments to the location through genetic algorithms.
ISSN:1999-4893
1999-4893
DOI:10.3390/a15030085