Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell

Non-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-08, Vol.12 (1), p.5093-5093, Article 5093
Hauptverfasser: Ma, Lijiao, Zhang, Shaoqing, Zhu, Jincheng, Wang, Jingwen, Ren, Junzhen, Zhang, Jianqi, Hou, Jianhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-P i ) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm −2 ). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control. Non-fullerene acceptors based on non-fused conjugated structures have potential for realizing low-cost organic photovoltaic cells, owing to its synthetic simplicity. Here, the authors develop a non-fused molecule with a three-dimensional interpenetrating network and compact π-π stacking, which is highly suitable for PV applications.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25394-w