Simulation-based Strategies for Smart Demand Response

Demand Response can be seen as one effective way to harmonize demand and supply in order to achieve high self-coverage of energy consumption by means of renewable energy sources. This paper presents two different simulation-based concepts to integrate demand-response strategies into energy managemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Sustainable Development of Energy, Water and Environment Systems Water and Environment Systems, 2018-03, Vol.6 (1), p.33-46
Hauptverfasser: Leobner, Ines, Smolek, Peter, Heinzl, Bernhard, Raich, Philipp, Schirrer, Alexander, Kozek, Martin, Rössler, Matthias, Mörzinger, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Demand Response can be seen as one effective way to harmonize demand and supply in order to achieve high self-coverage of energy consumption by means of renewable energy sources. This paper presents two different simulation-based concepts to integrate demand-response strategies into energy management systems in the customer domain of the Smart Grid. The first approach is a Model Predictive Control of the heating and cooling system of a low-energy office building. The second concept aims at industrial Demand Side Management by integrating energy use optimization into industrial automation systems. Both approaches are targeted at day-ahead planning. Furthermore, insights gained into the implications of the concepts onto the design of the model, simulation and optimization will be discussed. While both approaches share a similar architecture, different modelling and simulation approaches were required by the use cases.
ISSN:1848-9257
1848-9257
DOI:10.13044/j.sdewes.d5.0168