Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae
Microbial antibiotic resistance has become a worldwide concern, as it weakens the efficiency of the control of pathogenic microbes in both the fields of medicine and plant protection. A better understanding of antibiotic resistance mechanisms is helpful for the development of efficient approaches to...
Gespeichert in:
Veröffentlicht in: | Antibiotics (Basel) 2022-02, Vol.11 (2), p.245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial antibiotic resistance has become a worldwide concern, as it weakens the efficiency of the control of pathogenic microbes in both the fields of medicine and plant protection. A better understanding of antibiotic resistance mechanisms is helpful for the development of efficient approaches to settle this issue. In the present study, GC-MS-based metabolomic analysis was applied to explore the mechanisms of Zhongshengmycin (ZSM) resistance in
(Xoo), a bacterium that causes serious disease in rice. Our results show that the decline in the pyruvate cycle (the P cycle) was a feature for ZSM resistance in the metabolome of ZSM-resistant strain (Xoo-ZSM), which was further demonstrated as the expression level of genes involved in the P cycle and two enzyme activities were reduced. On the other hand, alanine was considered a crucial metabolite as it was significantly decreased in Xoo-ZSM. Exogenous alanine promoted the P cycle and enhanced the ZSM-mediated killing efficiency in Xoo-ZSM. Our study highlights that the depressed P cycle is a feature in Xoo-ZSM for the first time. Additionally, exogenous alanine is a candidate enhancer and can be applied with ZSM to improve the antibiotic-mediated killing efficiency in the control of infection caused by Xoo. |
---|---|
ISSN: | 2079-6382 2079-6382 |
DOI: | 10.3390/antibiotics11020245 |