Eckhaus and zigzag instability in a chemotaxis model of multiple sclerosis

We present a theoretical and numerical study of the bifurcations of the stationary patterns supported by a chemotactic model of Multiple Sclerosis (MS). We derive the normal forms of the dynamics which allows to predict the appearance and stabilization of the emerging branches describing the concent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia peloritana dei pericolanti. Classe I di scienze fis., mat. e naturali mat. e naturali, 2018-01, Vol.96 (S3), p.A9
Hauptverfasser: Eleonora Bilotta, Francesco Gargano, Valeria Giunta, Maria Carmela Lombardo, Pietro Pantano, Paolo Falsaperla
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a theoretical and numerical study of the bifurcations of the stationary patterns supported by a chemotactic model of Multiple Sclerosis (MS). We derive the normal forms of the dynamics which allows to predict the appearance and stabilization of the emerging branches describing the concentric patterns typical of Balo's sclerosis, a very aggressive variant of MS. Spatial modulation of the Turing-type structures through a zigzag instability is also addressed. The nonlinear stage of the Eckhaus and zigzag instability is investigated numerically: defect-mediated wavenumber adjustments are recovered and the time of occurrence of phase-slips is studied as the system parameters are varied.
ISSN:0365-0359
1825-1242
DOI:10.1478/AAPP.96S3A9