Multi-modal deep learning based on multi-dimensional and multi-level temporal data can enhance the prognostic prediction for multi-drug resistant pulmonary tuberculosis patients
Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, the...
Gespeichert in:
Veröffentlicht in: | Science in One Health 2022-11, Vol.1, p.100004, Article 100004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients. |
---|---|
ISSN: | 2949-7043 2949-7043 |
DOI: | 10.1016/j.soh.2022.100004 |