PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation

A centralized framework-based data-driven framework for active distribution system state estimation (DSSE) has been widely leveraged. However, it is challenged by potential data privacy breaches due to the aggregation of raw measurement data in a data center. A personalized federated learning-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CSEE Journal of Power and Energy Systems 2024-09, Vol.10 (5), p.2265-2270
Hauptverfasser: Huayi Wu, Zhao Xu, Jiaqi Ruan, Xianzhuo Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A centralized framework-based data-driven framework for active distribution system state estimation (DSSE) has been widely leveraged. However, it is challenged by potential data privacy breaches due to the aggregation of raw measurement data in a data center. A personalized federated learning-based DSSE method (PFL-DSSE) is proposed in a decentralized training framework for DSSE. Experimental validation confirms that PFL-DSSE can effectively and efficiently maintain data confidentiality and enhance estimation accuracy.
ISSN:2096-0042
DOI:10.17775/CSEEJPES.2023.08830