Shaping polymersomes into predictable morphologies via out-of-equilibrium self-assembly

Polymersomes are bilayer vesicles, self-assembled from amphiphilic block copolymers. They are versatile nanocapsules with adjustable properties, such as flexibility, permeability, size and functionality. However, so far no methodological approach to control their shape exists. Here we demonstrate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-08, Vol.7 (1), p.12606-12606, Article 12606
Hauptverfasser: Rikken, R. S. M., Engelkamp, H., Nolte, R. J. M., Maan, J. C., van Hest, J. C. M., Wilson, D. A., Christianen, P. C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymersomes are bilayer vesicles, self-assembled from amphiphilic block copolymers. They are versatile nanocapsules with adjustable properties, such as flexibility, permeability, size and functionality. However, so far no methodological approach to control their shape exists. Here we demonstrate a mechanistically fully understood procedure to precisely control polymersome shape via an out-of-equilibrium process. Carefully selecting osmotic pressure and permeability initiates controlled deflation, resulting in transient capsule shapes, followed by reinflation of the polymersomes. The shape transformation towards stomatocytes, bowl-shaped vesicles, was probed with magnetic birefringence, permitting us to stop the process at any intermediate shape in the phase diagram. Quantitative electron microscopy analysis of the different morphologies reveals that this shape transformation proceeds via a long-predicted hysteretic deflation–inflation trajectory, which can be understood in terms of bending energy. Because of the high degree of controllability and predictability, this study provides the design rules for accessing polymersomes with all possible different shapes. Polymersomes are used in many applications, ranging from drug delivery to microfluidics, but controlling their shape is difficult. Here, Christianen and co-workers have precisely controlled polymersome shape via an out-of-equilibrium process and fully understood the mechanism of this procedure.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms12606