Driver ECG Measuring System With a Conductive Fabric-Based Dry Electrode

The dry electrodes that the automotive manufacturers use to measure electrocardiogram (ECG) signals for driver status monitoring have three technical problems: a lack of attachment flexibility, low ECG signal detection stability, and the potential to harm or irritate the driver. In addition, the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.415-427
Hauptverfasser: Choi, You-Jun, Lee, Jae-Yeol, Kong, Seung-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dry electrodes that the automotive manufacturers use to measure electrocardiogram (ECG) signals for driver status monitoring have three technical problems: a lack of attachment flexibility, low ECG signal detection stability, and the potential to harm or irritate the driver. In addition, the complicated signal-conditioning circuits employed by automotive manufacturers to improve the SNR, increase the ECG signal detection stability, and to ensure a wider dynamic range of the electrodes increase the cost and complexity of driver ECG measuring systems. In this paper, we propose a driver ECG measuring system that resolves these three technical issues using a steering wheel covered with a conductive fabric-based dry electrode material, which is manufactured by an electroplating method. In addition, we employ a conductive fabric-shaping procedure in the development of the fabric-based dry electrode to improve the attachment flexibility and to reduce the cost and complexity of the required signal-conditioning circuit. We verify the ECG signal-measuring performance of the proposed system by comparing it with ECG signal measurement results from a clinical ECG monitoring system. In addition, despite applying a simpler signal conditional circuit than those used in conventional ECG measuring systems, we verify that the proposed system achieves higher SNR and ECG signal detection stability than conventional ECG measuring systems through various field tests in actual driving environments.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2766098