Kinematic Modeling and Experimental Study of a Rope-Driven Bionic Fish

This paper presents a biomimetic fish robot featuring a flexible spine driven by cables, which integrates the cable-driven mechanism with a flexible spine. The drive system separates the body and tail fin drives for control, offering enhanced flexibility and ease in achieving phase difference contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomimetics (Basel, Switzerland) Switzerland), 2024-06, Vol.9 (6), p.345
Hauptverfasser: Zhang, Bo, Huang, Yongchen, Wang, Zhuo, Ma, Hongwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a biomimetic fish robot featuring a flexible spine driven by cables, which integrates the cable-driven mechanism with a flexible spine. The drive system separates the body and tail fin drives for control, offering enhanced flexibility and ease in achieving phase difference control between the body and tail fin movements compared to the conventional servo motor cascaded structure. A prototype of the biomimetic fish robot was developed, accompanied by the establishment of a kinematic model. Based on this model, a control method for the biomimetic fish is proposed. Additionally, we introduce the concept of prestress to establish a numerical model for the biomimetic fish. Using multi-physical field simulation software, we simulate the two-dimensional autonomous swimming process of the biomimetic fish under different flapping frequencies and solve for its swimming characteristics as well as hydrodynamic properties. Both the simulation and experimental results validate the accuracy of our kinematic model.
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics9060345