Recent insights on principles of synaptic protein degradation [version 1; peer review: 3 approved]
Maintaining synaptic integrity and function depends on the continuous removal and degradation of aged or damaged proteins. Synaptic protein degradation has received considerable attention in the context of synaptic plasticity and growing interest in relation to neurodegenerative and other disorders....
Gespeichert in:
Veröffentlicht in: | F1000 research 2017, Vol.6, p.675-675 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maintaining synaptic integrity and function depends on the continuous removal and degradation of aged or damaged proteins. Synaptic protein degradation has received considerable attention in the context of synaptic plasticity and growing interest in relation to neurodegenerative and other disorders. Conversely, less attention has been given to constitutive, ongoing synaptic protein degradation and the roles canonical degradation pathways play in these processes. Here we briefly review recent progress on this topic and new experimental approaches which have expedited such progress and highlight several emerging principles. These include the realization that synaptic proteins typically have unusually long lifetimes, as might be expected from the remote locations of most synaptic sites; the possibility that degradation pathways can change with time from synthesis, cellular context, and physiological input; and that degradation pathways, other than ubiquitin-proteasomal-mediated degradation, might play key roles in constitutive protein degradation at synaptic sites. Finally, we point to the importance of careful experimental design and sufficiently sensitive techniques for studying synaptic protein degradation, which bring into account their slow turnover rates and complex life cycles. |
---|---|
ISSN: | 2046-1402 2046-1402 |
DOI: | 10.12688/f1000research.10599.1 |