Machine learning of radial basis function neural network based on Kalman filter: Introduction
This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how the...
Gespeichert in:
Veröffentlicht in: | Tehnika (Beograd) 2014, Vol.69 (4), p.613-620 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice. |
---|---|
ISSN: | 0040-2176 2560-3086 |
DOI: | 10.5937/tehnika1404613V |