Nonlinear Forced Vibration of Bidirectional Functionally Graded Porous Material Beam

The nonlinear forced vibration of bidirectional functionally graded porous material beams where the material components gradient change in both thickness and axial directions are studied in this study. Combining von Karman’s geometric nonlinearity and first-order shear deformation theory, the govern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2021, Vol.2021 (1)
Hauptverfasser: Wu, Jianqiang, Chen, Lunting, Wu, Ruixian, Chen, Xiaochao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlinear forced vibration of bidirectional functionally graded porous material beams where the material components gradient change in both thickness and axial directions are studied in this study. Combining von Karman’s geometric nonlinearity and first-order shear deformation theory, the governing equations describing the coupled deformations are formulated as a system of nonlinear partial differential equations. Utilizing the Galerkin method, the formulated continuous model is transformed to a coupled nonlinear ordinary differential dynamic system. By accomplishing bifurcation calculation for periodic response of the discrete system using pseudoarclength technique, the vibration response curves are obtained by extracting the max-min amplitude of periodic motions. To highlight the effect of nonlinearity, the linear and nonlinear dynamic responses of beam are demonstrated. It is found that the periodic motion of beam may undergo cyclic-fold bifurcation. Numerical results are presented to examine the effects of the system parameters, e.g., gradient indexes, porosity, damping coefficients, and aspect ratio.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/6675125