A New Modified Levenberg–Marquardt Method for Systems of Nonlinear Equations

Taking a new choice of the LM parameter λk=μkJkTFkδ with δ∈0,2, we give a new modified Levenberg–Marquardt method. Under the error bound condition c distw,S≤JwTFw which is weaker than the nonsingular of Jacobian Jw, we present that the new Levenberg–Marquardt method has at least superlinear converge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2023-02, Vol.2023, p.1-13
Hauptverfasser: Chen, Liang, Ma, Yanfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Taking a new choice of the LM parameter λk=μkJkTFkδ with δ∈0,2, we give a new modified Levenberg–Marquardt method. Under the error bound condition c distw,S≤JwTFw which is weaker than the nonsingular of Jacobian Jw, we present that the new Levenberg–Marquardt method has at least superlinear convergence when δ∈0,1 and quadratic convergence when δ∈1,2, respectively, which indicates that our new Levenberg–Marquardt method is performed for the systems of nonlinear equations. Also, numerical experiments indicate its efficiency on a set of systems of nonlinear equations.
ISSN:2314-4629
2314-4785
DOI:10.1155/2023/6043780