A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing

High glucose-induced vascular endothelial injury is a major pathological factor involved in non-healing diabetic wounds. To interrupt this pathological process, we design an all-peptide printable hydrogel platform based on highly efficient and precise one-step click chemistry of thiolated γ-polyglut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-11, Vol.14 (1), p.7856-20, Article 7856
Hauptverfasser: Huang, Jinjian, Yang, Rong, Jiao, Jiao, Li, Ze, Wang, Penghui, Liu, Ye, Li, Sicheng, Chen, Canwen, Li, Zongan, Qu, Guiwen, Chen, Kang, Wu, Xiuwen, Chi, Bo, Ren, Jianan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High glucose-induced vascular endothelial injury is a major pathological factor involved in non-healing diabetic wounds. To interrupt this pathological process, we design an all-peptide printable hydrogel platform based on highly efficient and precise one-step click chemistry of thiolated γ-polyglutamic acid, glycidyl methacrylate-conjugated γ-polyglutamic acid, and thiolated arginine-glycine-aspartate sequences. Vascular endothelial growth factor 165-overexpressed human umbilical vein endothelial cells are printed using this platform, hence fabricating a living material with high cell viability and precise cell spatial distribution control. This cell-laden hydrogel platform accelerates the diabetic wound healing of rats based on the unabated vascular endothelial growth factor 165 release, which promotes angiogenesis and alleviates damages on vascular endothelial mitochondria, thereby reducing tissue hypoxia, downregulating inflammation, and facilitating extracellular matrix remodeling. Together, this study offers a promising strategy for fabricating tissue-friendly, high-efficient, and accurate 3D printed all-peptide hydrogel platform for cell delivery and self-renewable growth factor therapy. Diabetic wounds are challenging to heal, with vascular injury induced by high glucose a key pathological factor. Here, the authors report a hydrogel designed to interrupt the process of vascular injury, with angiogenic capacity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-43364-2