PD-L2 suppresses T cell signaling via coinhibitory microcluster formation and SHP2 phosphatase recruitment
The coinhibitory receptor, PD-1, is of major importance for the suppression of T cell activation in various types of immune responses. A high-resolution imaging study showed that PD-1 forms a coinhibitory signalosome, “PD-1 microcluster”, with the phosphatase, SHP2, to dephosphorylate the TCR/CD3 co...
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-05, Vol.4 (1), p.581-12, Article 581 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The coinhibitory receptor, PD-1, is of major importance for the suppression of T cell activation in various types of immune responses. A high-resolution imaging study showed that PD-1 forms a coinhibitory signalosome, “PD-1 microcluster”, with the phosphatase, SHP2, to dephosphorylate the TCR/CD3 complex and its downstream signaling molecules. Such a consecutive reaction entirely depended on PD-1–PD-L1/2 binding. PD-L2 is expressed on professional antigen-presenting cells and also on some tumor cells, which possibly explains the discrepant efficacy of immune checkpoint therapy for PD-L1-negative tumors. Here, we performed precise imaging analysis of PD-L2 forming PD-1–PD-L2 clusters associating with SHP2. PD-L2 could compete with PD-L1 for binding to PD-1, occupying the same space at TCR microclusters. The PD-1 microcluster formation was inhibited by certain mAbs with functional consequences. Thus, PD-1 microcluster formation provides a visible index for the effectiveness of anti-PD-1- or anti-PD-L1/2-mediated T cell suppression. PD-L2 may exert immune suppressive responses cooperatively with PD-L1 on the microcluster scale.
Takehara et al performed imaging analysis of microcluster formation between the PD-L1 and PD-L2, which are known to play a role in T cell activation in response to tumour cell signaling. Their analysis showed that the cluster formation inhibited T cell receptor signaling and could serve as a visual index for PD-L1/2-targeted cancer therapies. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-021-02111-3 |