Retrieval of Phytoplankton Pigment Composition from Their In Vivo Absorption Spectra

Algal pigment composition is an indicator of phytoplankton community structure that can be estimated from optical observations. Assessing the potential capability to retrieve different types of pigments from phytoplankton absorption is critical for further applications. This study investigated the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-12, Vol.13 (24), p.5112
Hauptverfasser: Zhang, Yinxue, Wang, Guifen, Sathyendranath, Shubha, Xu, Wenlong, Xiao, Yizhe, Jiang, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Algal pigment composition is an indicator of phytoplankton community structure that can be estimated from optical observations. Assessing the potential capability to retrieve different types of pigments from phytoplankton absorption is critical for further applications. This study investigated the performance of three models and the utility of hyperspectral in vivo phytoplankton absorption spectra for retrieving pigment composition using a large database (n = 1392). Models based on chlorophyll-a (Chl-a model), Gaussian decomposition (Gaussian model), and partial least squares (PLS) regression (PLS model) were compared. Both the Gaussian model and the PLS model were applied to hyperspectral phytoplankton absorption data. Statistical analysis revealed the advantages and limitations of each model. The Chl-a model performed well for chlorophyll-c (Chl-c), diadinoxanthin, fucoxanthin, photosynthetic carotenoids (PSC), and photoprotective carotenoids (PPC), with a median absolute percent difference for cross-validation (MAPDCV) < 58%. The Gaussian model yielded good results for predicting Chl-a, Chl-c, PSC, and PPC (MAPDCV < 43%). The performance of the PLS model was comparable to that of the Chl-a model, and it exhibited improved retrievals of chlorophyll-b, alloxanthin, peridinin, and zeaxanthin. Additional work undertaken with the PLS model revealed the prospects of hyperspectral-resolution data and spectral derivative analyses for retrieving marker pigment concentrations. This study demonstrated the applicability of in situ hyperspectral phytoplankton absorption data for retrieving pigment composition and provided useful insights regarding the development of bio-optical algorithms from hyperspectral and satellite-based ocean-colour observations.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13245112