An Improved MOEA/D with Optimal DE Schemes for Many-Objective Optimization Problems
MOEA/D is a promising multi-objective evolutionary algorithm based on decomposition, and it has been used to solve many multi-objective optimization problems very well. However, there is a class of multi-objective problems, called many-objective optimization problems, but the original MOEA/D cannot...
Gespeichert in:
Veröffentlicht in: | Algorithms 2017, Vol.10 (3), p.86 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MOEA/D is a promising multi-objective evolutionary algorithm based on decomposition, and it has been used to solve many multi-objective optimization problems very well. However, there is a class of multi-objective problems, called many-objective optimization problems, but the original MOEA/D cannot solve them well. In this paper, an improved MOEA/D with optimal differential evolution (oDE) schemes is proposed, called MOEA/D-oDE, aiming to solve many-objective optimization problems. Compared with MOEA/D, MOEA/D-oDE has two distinguishing points. On the one hand, MOEA/D-oDE adopts a newly-introduced decomposition approach to decompose the many-objective optimization problems, which combines the advantages of the weighted sum approach and the Tchebycheff approach. On the other hand, a kind of combination mechanism for DE operators is designed for finding the best child solution so as to do the a posteriori computing. In our experimental study, six continuous test instances with 4-6 objectives comparing NSGA-II (nondominated sorting genetic algorithm II) and MOEA/D as accompanying experiments are applied. Additionally, the final results indicate that MOEA/D-oDE outperforms NSGA-II and MOEA/D in almost all cases, particularly in those problems that have complicated Pareto shapes and higher dimensional objectives, where its advantages are more obvious. |
---|---|
ISSN: | 1999-4893 1999-4893 |
DOI: | 10.3390/a10030086 |