Attosecond stable dispersion-free delay line for easy ultrafast metrology

We demonstrate a dispersion-free wavefront splitting attosecond resolved interferometric delay line for easy ultrafast metrology of broadband femtosecond pulses. Using a pair of knife-edge prisms, we symmetrically split and later recombine the two wavefronts with a few tens of attosecond resolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-05, Vol.12 (1), p.8525-8525, Article 8525
Hauptverfasser: Tyagi, Akansha, Sidhu, Mehra S., Mandal, Ankur, Kapoor, Sanjay, Dahiya, Sunil, Rost, Jan M., Pfeifer, Thomas, Singh, Kamal P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a dispersion-free wavefront splitting attosecond resolved interferometric delay line for easy ultrafast metrology of broadband femtosecond pulses. Using a pair of knife-edge prisms, we symmetrically split and later recombine the two wavefronts with a few tens of attosecond resolution and stability and employ a single-pixel analysis of interference fringes with good contrast using a phone camera without any iris or nonlinear detector. Our all-reflective delay line is theoretically analyzed and experimentally validated by measuring 1st and 2nd order autocorrelations and the SHG-FROG trace of a NIR femtosecond pulse. Our setup is compact, offers attosecond stability with flexibility for independent beam-shaping of the two arms. Furthermore, we suggest that our compact and in-line setup can be employed for attosecond resolved pump-probe experiments of matter with few-cycle pulses.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-12348-5