Biochemical Characteristics of Laccases and Their Practical Application in the Removal of Xenobiotics from Water
The rapid growth of the human population in recent decades has resulted in the intensive development of various industries, the development of urban agglomerations and increased production of medicines for animals and humans, plant protection products and fertilizers on an unprecedented scale. Inten...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-03, Vol.13 (7), p.4394 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid growth of the human population in recent decades has resulted in the intensive development of various industries, the development of urban agglomerations and increased production of medicines for animals and humans, plant protection products and fertilizers on an unprecedented scale. Intensive agriculture, expanding urban areas and newly established industrial plants release huge amounts of pollutants into the environment, which, in nature, are very slowly degraded or not decomposed, which leads to their accumulation in water and terrestrial ecosystems. Researchers are scouring extremely contaminated environments to identify organisms that have the ability to degrade resistant xenobiotics, such as PAHs, some pharmaceuticals, plasticizers and dyes. These organisms are a potential source of enzymes that could be used in the bioremediation of industrial and municipal wastewater. Great hopes are pinned on oxidoreductases, including laccase, called by some a green biocatalyst because the end product of the oxidation of a wide range of substrates by this enzyme is water and other compounds, most often including dimers, trimers and polymers. Laccase immobilization techniques and their use in systems together with adsorption or separation have found application in the enzymatic bioremediation of wastewater. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13074394 |