Comparative gene expression profiling of mouse ovaries upon stimulation with natural equine chorionic gonadotropin (N-eCG) and tethered recombinant-eCG (R-eCG)
Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene...
Gespeichert in:
Veröffentlicht in: | BMC biotechnology 2020-11, Vol.20 (1), p.59-13, Article 59 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC).
R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment. The MCR was higher for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24 h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by > 2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses.
The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo. |
---|---|
ISSN: | 1472-6750 1472-6750 |
DOI: | 10.1186/s12896-020-00653-8 |