A machine learning method based on the genetic and world competitive contests algorithms for selecting genes or features in biological applications
Gene/feature selection is an essential preprocessing step for creating models using machine learning techniques. It also plays a critical role in different biological applications such as the identification of biomarkers. Although many feature/gene selection algorithms and methods have been introduc...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-02, Vol.11 (1), p.3349-3349, Article 3349 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gene/feature selection is an essential preprocessing step for creating models using machine learning techniques. It also plays a critical role in different biological applications such as the identification of biomarkers. Although many feature/gene selection algorithms and methods have been introduced, they may suffer from problems such as parameter tuning or low level of performance. To tackle such limitations, in this study, a universal wrapper approach is introduced based on our introduced optimization algorithm and the genetic algorithm (GA). In the proposed approach, candidate solutions have variable lengths, and a support vector machine scores them. To show the usefulness of the method, thirteen classification and regression-based datasets with different properties were chosen from various biological scopes, including drug discovery, cancer diagnostics, clinical applications, etc. Our findings confirmed that the proposed method outperforms most of the other currently used approaches and can also free the users from difficulties related to the tuning of various parameters. As a result, users may optimize their biological applications such as obtaining a biomarker diagnostic kit with the minimum number of genes and maximum separability power. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-82796-y |