Can we more precisely classify exposure to antenatal depression and anxiety in multivariable prediction models of pregnancy and birth outcomes: a population-based cohort study

Background Depression and anxiety are highly prevalent within the perinatal period and have been associated with myriad adverse pregnancy and birth outcomes. In this study, we sought to investigate whether population-based data can be used to build complex, longitudinal mental health histories that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC psychiatry 2023-11, Vol.23 (1), p.1-803, Article 803
Hauptverfasser: Thiele, Grace A, Ryan, Deirdre M, Oberlander, Tim F, Hanley, Gillian E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Depression and anxiety are highly prevalent within the perinatal period and have been associated with myriad adverse pregnancy and birth outcomes. In this study, we sought to investigate whether population-based data can be used to build complex, longitudinal mental health histories that improve our ability to predict adverse pregnancy and birth outcomes. Methods Using population-based, administrative datasets, we examined individual-level mental health services use of all birth parents who delivered a live infant in British Columbia, Canada between April 1, 2000, and December 31, 2013, and who were registered with the provincial Medical Services Plan for over 100 days per year from 10-years preconception to 1-year postpartum. We operationalized variables to proxy severity, persistence, and frequency of depression/anxiety from preconception through pregnancy, then constructed predictive regression models for postpartum depression/anxiety and preterm birth. Results Predictive modeling of postpartum depression/anxiety and preterm birth revealed better predictions and stronger performance with inclusion of a more detailed preconception mental health history. Incorporating dichotomous indicators for depression/anxiety across preconception markedly improved predictive power and model fit. Our detailed measures of mental health service use predicted postpartum depression/anxiety much better than preterm birth. Variables characterizing use of outpatient psychiatry care and outpatient visit frequency within the first five years preconception were most useful in predicting postpartum depression/anxiety and preterm birth, respectively. Conclusion We report a feasible method for developing and applying more nuanced definitions of depression/anxiety within population-based data. By accounting for differing profiles of mental health treatment, mental health history, and current mental health, we can better control for severity of underlying conditions and thus better understand more complex associations between antenatal mental health and adverse outcomes. Keywords: Perinatal mental health, Depression, Anxiety, Administrative data, Postpartum depression, Preterm birth
ISSN:1471-244X
1471-244X
DOI:10.1186/s12888-023-05284-9