Entropy-Related Extremum Principles for Model Reduction of Dissipative Dynamical Systems

Chemical kinetic systems are modeled by dissipative ordinary differential equations involving multiple time scales. These lead to a phase flow generating anisotropic volume contraction. Kinetic model reduction methods generally exploit time scale separation into fast and slow modes, which leads to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2010-04, Vol.12 (4), p.706-719
1. Verfasser: Lebiedz, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical kinetic systems are modeled by dissipative ordinary differential equations involving multiple time scales. These lead to a phase flow generating anisotropic volume contraction. Kinetic model reduction methods generally exploit time scale separation into fast and slow modes, which leads to the occurrence of low-dimensional slow invariant manifolds. The aim of this paper is to review and discuss a computational optimization approach for the numerical approximation of slow attracting manifolds based on entropy-related and geometric extremum principles for reaction trajectories.
ISSN:1099-4300
1099-4300
DOI:10.3390/e12040706