Multicolor Photometry of Tiny Near-Earth Asteroid 2015 RN35 across a Wide Range of Phase Angles: Possible Mission-accessible A-type Asteroid
Studying small near-Earth asteroids is important in order to understand their dynamical histories and origins as well as to mitigate the damage caused by asteroid impacts on Earth. We report the results of multicolor photometry of the tiny near-Earth asteroid 2015 RN35 using the 3.8 m Seimei telesco...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2023-12, Vol.166 (6), p.229 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studying small near-Earth asteroids is important in order to understand their dynamical histories and origins as well as to mitigate the damage caused by asteroid impacts on Earth. We report the results of multicolor photometry of the tiny near-Earth asteroid 2015 RN35 using the 3.8 m Seimei telescope in Japan and the TRAPPIST-South telescope in Chile over 17 nights in 2022 December and 2023 January. We observed 2015 RN35 across a wide range of phase angles from 2° to 30° in the g, r, i, and z bands in the Pan-STARRS system. These lightcurves show that 2015 RN35 is in a nonprincipal axis spin state with two characteristic periods of 1149.7 ± 0.3 s and 896.01 ± 0.01 s. We found that the slope of the visible spectrum of 2015 RN35 is as red as asteroid (269) Justitia, one of the very red objects in the main belt, which indicates that 2015 RN35 can be classified as an A- or Z-type asteroid. In conjunction with the shallow slope of the phase curve, we suppose that 2015 RN35 is a high-albedo A-type asteroid. We demonstrated that surface properties of tiny asteroids could be well constrained by intensive observations across a wide range of phase angles. 2015 RN35 is a possible mission-accessible A-type near-Earth asteroid with a small Δv of 11.801 km s−1 in the launch window between 2030 and 2035. |
---|---|
ISSN: | 0004-6256 1538-3881 1538-3881 |
DOI: | 10.3847/1538-3881/ad0151 |