Performance Evaluation of Communication Infrastructure for Peer-to-Peer Energy Trading in Community Microgrids

With the rapidly growing energy consumption and the rising number of prosumers, next-generation energy management systems are facing significant impacts by peer-to-peer (P2P) energy trading, which will enable prosumers to sell and purchase energy locally. Until now, the large-scale deployment of P2P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-07, Vol.16 (13), p.5116
Hauptverfasser: Eltamaly, Ali M., Ahmed, Mohamed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapidly growing energy consumption and the rising number of prosumers, next-generation energy management systems are facing significant impacts by peer-to-peer (P2P) energy trading, which will enable prosumers to sell and purchase energy locally. Until now, the large-scale deployment of P2P energy trading has still posed many technical challenges for both physical and virtual layers. Although the communication infrastructure represents the cornerstone to enabling real-time monitoring and control, less attention has been given to the performance of different communication technologies to support P2P implementations. This work investigates the scalability and performance of the communication infrastructure that supports P2P energy trading on a community microgrid. Five levels make up the developed P2P architecture: the power grid, communication network, cloud management, blockchain, and application. Based on the IEC 61850 standard, we developed a communication network model for a smart consumer that comprised renewable energy sources and energy storage devices. Two different scenarios were investigated: a home area network for a smart prosumer and a neighborhood area network for a community-based P2P architecture. Through simulations, the suggested network models were assessed for their channel bandwidth and end-to-end latency utilizing different communication technologies.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16135116