The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex

The integration of visual stimuli and motor feedback is critical for successful visually guided navigation. These signals have been shown to shape neuronal activity in the primary visual cortex (V1), in an experience-dependent manner. Here, we examined whether visual, reward, and self-motion-related...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2018-09, Vol.24 (10), p.2521-2528
Hauptverfasser: Pakan, Janelle M.P., Currie, Stephen P., Fischer, Lukas, Rochefort, Nathalie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The integration of visual stimuli and motor feedback is critical for successful visually guided navigation. These signals have been shown to shape neuronal activity in the primary visual cortex (V1), in an experience-dependent manner. Here, we examined whether visual, reward, and self-motion-related inputs are integrated in order to encode behaviorally relevant locations in V1 neurons. Using a behavioral task in a virtual environment, we monitored layer 2/3 neuronal activity as mice learned to locate a reward along a linear corridor. With learning, a subset of neurons became responsive to the expected reward location. Without a visual cue to the reward location, both behavioral and neuronal responses relied on self-motion-derived estimations. However, when visual cues were available, both neuronal and behavioral responses were driven by visual information. Therefore, a population of V1 neurons encode behaviorally relevant spatial locations, based on either visual cues or on self-motion feedback when visual cues are absent. [Display omitted] •Most V1 L2/3 neurons show task-related activity after learning a rewarded task•A subset of neurons became responsive to an expected reward location•Without visual cues, behavioral and neuronal responses rely on self-motion signals•With visual cues, behavioral and neuronal responses rely on visual information Pakan et al. show that spatial locations that are relevant for a behavioral task are represented in the primary visual cortex. Both neuronal and behavioral responses to an expected reward location primarily rely on visual information. Without visual landmarks, both neuronal and behavioral responses are driven by self-motion derived information.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2018.08.010