Divergent accumulation of microbial necromass and plant lignin components in grassland soils

The means through which microbes and plants contribute to soil organic carbon (SOC) accumulation remain elusive due to challenges in disentangling the complex components of SOC. Here we use amino sugars and lignin phenols as tracers for microbial necromass and plant lignin components, respectively,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-08, Vol.9 (1), p.3480-9, Article 3480
Hauptverfasser: Ma, Tian, Zhu, Shanshan, Wang, Zhiheng, Chen, Dima, Dai, Guohua, Feng, Bowei, Su, Xiangyan, Hu, Huifeng, Li, Kaihui, Han, Wenxuan, Liang, Chao, Bai, Yongfei, Feng, Xiaojuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The means through which microbes and plants contribute to soil organic carbon (SOC) accumulation remain elusive due to challenges in disentangling the complex components of SOC. Here we use amino sugars and lignin phenols as tracers for microbial necromass and plant lignin components, respectively, and investigate their distribution in the surface soils across Mongolian grasslands in comparison with published data for other grassland soils of the world. While lignin phenols decrease, amino sugars increase with SOC contents in all examined grassland soils, providing continental-scale evidence for the key role of microbial necromass in SOC accumulation. Moreover, in contrast to clay’s control on amino sugar accumulation in fine-textured soils, aridity plays a central role in amino sugar accrual and lignin decomposition in the coarse-textured Mongolian soils. Hence, aridity shifts may have differential impacts on microbial-mediated SOC accumulation in grassland soils of varied textures. It remains unclear how microbes and plants contribute to soil organic carbon (SOC) accrual. Here, using biomarkers, the authors show that microbial necromass and plant-derived lignin components have divergent accumulation mechanisms and that microbial necromass plays a key role in SOC accumulation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05891-1