Experimental validation of theoretical calculation and numerical simulation for optimization of divers’s breathing apparatus

In order to optimize the breathing apparatus in the open circuit for divers, theoretical calculus and numerical simulation of resistances specific to the potential flow of gas through the studied circuit were made. Respiratory gas flow simulation through three constructive versions of the second sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Bulletin 2018-07, Vol.23 (1), p.53-59
Hauptverfasser: Stanciu, Tamara, Scupi, Andrei, Dinu, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to optimize the breathing apparatus in the open circuit for divers, theoretical calculus and numerical simulation of resistances specific to the potential flow of gas through the studied circuit were made. Respiratory gas flow simulation through three constructive versions of the second stage pressure reducer intake mechanism was done after modeling the respiratory air circuit through the two main restrictors: the first variable (between the seat and the piston) and the second fixed (the hole in the cylindrical piston). The results regarding the theoretical calculation and numerical simulation have been validated by experimental testing of two of the studied models. Experimental measurements were made on a tester at the Diving Center of Constanta's Hyperbaric Laboratory. The volume flow rate of supplied respiratory gas was recorded, together with the inspire depression that opens the mechanism, until the maximum flow rate for each constructive version. After validating the results of the theoretical calculation and numerical simulation on the two models, the conclusion is the same: the resistance decreases if the geometry of the cylindrical hole in the piston (the second fixed restrictor) changes in a conical hole
ISSN:1224-5178
2451-3148
DOI:10.2478/bsaft-2018-0007