Membrane to cortex attachment determines different mechanical phenotypes in LGR5+ and LGR5- colorectal cancer cells

Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-04, Vol.15 (1), p.3363-3363, Article 3363
Hauptverfasser: Conti, Sefora, Venturini, Valeria, Cañellas-Socias, Adrià, Cortina, Carme, Abenza, Juan F., Stephan-Otto Attolini, Camille, Middendorp Guerra, Emily, Xu, Catherine K., Li, Jia Hui, Rossetti, Leone, Stassi, Giorgio, Roca-Cusachs, Pere, Diz-Muñoz, Alba, Ruprecht, Verena, Guck, Jochen, Batlle, Eduard, Labernadie, Anna, Trepat, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly understood. Using CRC patient derived organoids (PDOs), we find that compared to LGR5- cells, LGR5+ cancer stem cells are stiffer, adhere better to the extracellular matrix (ECM), move slower both as single cells and clusters, display higher nuclear YAP, show a higher survival rate in response to mechanical confinement, and form larger transendothelial gaps. These differences are largely explained by the downregulation of the membrane to cortex attachment proteins Ezrin/Radixin/Moesin (ERMs) in the LGR5+ cells. By analyzing single cell RNA-sequencing (scRNA-seq) expression patterns from a patient cohort, we show that this downregulation is a robust signature of colorectal tumors. Our results show that LGR5- cells display a mechanically dynamic phenotype suitable for dissemination from the primary tumor whereas LGR5+ cells display a mechanically stable and resilient phenotype suitable for extravasation and metastatic growth. The mechanical properties of heterogeneous cell populations in colorectal tumors and the relevance to cancer metastasis remain not fully understood. Here, the authors suggest that the variations in malignant phenotypes between LGR5-positive cancer stem cells and LGR5-negative cells could be due to their distinct mechanical phenotypes observed in vitro, determined by the membrane to cortex attachment proteins Ezrin/Radixin/Moesin.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47227-2