Key Molecules of Fatty Acid Metabolism in Gastric Cancer

Fatty acid metabolism is closely linked to the progression of gastric cancer (GC), a very aggressive and life-threatening tumor. This study examines linked molecules, such as Sterol Regulatory Element-Binding Protein 1 (SREBP1), ATP Citrate Lyase (ACLY), Acetyl-CoA Synthases (ACSs), Acetyl-CoA Carbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules (Basel, Switzerland) Switzerland), 2022-05, Vol.12 (5), p.706
Hauptverfasser: Li, Chunlei, Zhang, Lilong, Qiu, Zhendong, Deng, Wenhong, Wang, Weixing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fatty acid metabolism is closely linked to the progression of gastric cancer (GC), a very aggressive and life-threatening tumor. This study examines linked molecules, such as Sterol Regulatory Element-Binding Protein 1 (SREBP1), ATP Citrate Lyase (ACLY), Acetyl-CoA Synthases (ACSs), Acetyl-CoA Carboxylase (ACC), Fatty Acid Synthase (FASN), Stearoyl-CoA Desaturase 1 (SCD1), CD36, Fatty Acid Binding Proteins (FABPs), and Carnitine palmitoyltransferase 1 (CPT1), as well as their latest studies and findings in gastric cancer to unveil its core mechanism. The major enzymes of fatty acid de novo synthesis are ACLY, ACSs, ACC, FASN, and SCD1, while SREBP1 is the upstream molecule of fatty acid anabolism. Fatty acid absorption is mediated by CD36 and FABPs, and fatty acid catabolism is mediated by CPT1. If at all possible, we will discover novel links between fatty acid metabolism and a prospective gastric cancer target.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom12050706