Graphene Family Nanomaterials (GFN)-TiO2 for the Photocatalytic Removal of Water and Air Pollutants: Synthesis, Characterization, and Applications

Given the industrial revolutions and resource scarcity, the development of green technologies which aims to conserve resources and reduce the negative impacts of technology on the environment has become a critical issue of concern. One example is heterogeneous photocatalytic degradation. Titanium di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-11, Vol.11 (12), p.3195
Hauptverfasser: Lin, Chih-Hsien, Chen, Wei-Hsiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the industrial revolutions and resource scarcity, the development of green technologies which aims to conserve resources and reduce the negative impacts of technology on the environment has become a critical issue of concern. One example is heterogeneous photocatalytic degradation. Titanium dioxide (TiO2) has been intensively researched given its low toxicity and photocatalytic effects under ultraviolet (UV) light irradiation. The advantages conferred by the physical and electrochemical properties of graphene family nanomaterials (GFN) have contributed to the combination of GFN and TiO2 as well as the current variety of GFN-TiO2 catalysts that have exhibited improved characteristics such as greater electron transfer and narrower bandgaps for more potential applications, including those under visible light irradiation. In this review, points of view on the intrinsic properties of TiO2, GFNs (pristine graphene, graphene oxide (GO), reduced GO, and graphene quantum dots (GQDs)), and GFN-TiO2 are presented. This review also explains practical synthesis techniques along with perspective characteristics of these TiO2- and/or graphene-based materials. The enhancement of the photocatalytic activity by using GFN-TiO2 and its improved photocatalytic reactions for the treatment of organic, inorganic, and biological pollutants in water and air phases are reported. It is expected that this review can provide insights into the key to optimizing the photocatalytic activity of GFN-TiO2 and possible directions for future development in these fields.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11123195