Development and application of the helically coiled once-through steam generator module for dynamic simulation of nuclear hybrid energy system
Small Modular Reactors (SMRs) adopt the Helically Coiled Once-Through Steam Generators (OTSG) extensively for its compactness and higher heat transfer efficiency. As a heat exchanger between the primary side (reactor coolant system) and the secondary side (feedwater and steam system) of nuclear stea...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2024-08, Vol.56 (8), p.3315-3329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small Modular Reactors (SMRs) adopt the Helically Coiled Once-Through Steam Generators (OTSG) extensively for its compactness and higher heat transfer efficiency. As a heat exchanger between the primary side (reactor coolant system) and the secondary side (feedwater and steam system) of nuclear steam supply system, the inlet/outlet conditions both of shell side and tube side of OTSGs have significant impacts on overall system response. Considering the flexible operation of SMRs and heat application by extracting steam, a simulation tool for accurate prediction of the OTSG dynamic behaviors would be required for optimizing design and control. In this study, the OTSG dynamic simulation model has been developed. Mathematical governing equation has been derived by using moving boundary approach and a simulation module has been developed by using Modelica Language. The developed module has been compared with publicly available experimental results and benchmarked with MARS-KS calculation results. Also, it has been incorporated into the integrated SMR model (i.e., reactor core, primary side, secondary side) and dynamic behaviors with reactivity feedback and heat balancing have been investigated. In both of steady-state and transient conditions, it shows the promising accuracy. |
---|---|
ISSN: | 1738-5733 |
DOI: | 10.1016/j.net.2024.03.032 |