Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning
Fresh weight is a widely used growth indicator for quantifying crop growth. Traditional fresh weight measurement methods are time-consuming, laborious, and destructive. Non-destructive measurement of crop fresh weight is urgently needed in plant factories with high environment controllability. In th...
Gespeichert in:
Veröffentlicht in: | Frontiers in plant science 2022-08, Vol.13, p.980581-980581 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fresh weight is a widely used growth indicator for quantifying crop growth. Traditional fresh weight measurement methods are time-consuming, laborious, and destructive. Non-destructive measurement of crop fresh weight is urgently needed in plant factories with high environment controllability. In this study, we proposed a multi-modal fusion based deep learning model for automatic estimation of lettuce shoot fresh weight by utilizing RGB-D images. The model combined geometric traits from empirical feature extraction and deep neural features from CNN. A lettuce leaf segmentation network based on U-Net was trained for extracting leaf boundary and geometric traits. A multi-branch regression network was performed to estimate fresh weight by fusing color, depth, and geometric features. The leaf segmentation model reported a reliable performance with a mIoU of 0.982 and an accuracy of 0.998. A total of 10 geometric traits were defined to describe the structure of the lettuce canopy from segmented images. The fresh weight estimation results showed that the proposed multi-modal fusion model significantly improved the accuracy of lettuce shoot fresh weight in different growth periods compared with baseline models. The model yielded a root mean square error (RMSE) of 25.3 g and a coefficient of determination (
R
2
) of 0.938 over the entire lettuce growth period. The experiment results demonstrated that the multi-modal fusion method could improve the fresh weight estimation performance by leveraging the advantages of empirical geometric traits and deep neural features simultaneously. |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2022.980581 |