Long non-coding RNA SRA1 suppresses radiotherapy resistance in esophageal squamous cell carcinoma by modulating glycolytic reprogramming
Esophageal squamous cell carcinoma (ESCC), a highly aggressive subtype of esophageal cancer, is characterized by late-stage diagnosis and limited treatment options. Recent advancements in transcriptome sequencing technologies have illuminated the molecular intricacies of ESCC tumors, revealing metab...
Gespeichert in:
Veröffentlicht in: | Open medicine (Warsaw, Poland) Poland), 2024-01, Vol.19 (1), p.20240946-20240946 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Esophageal squamous cell carcinoma (ESCC), a highly aggressive subtype of esophageal cancer, is characterized by late-stage diagnosis and limited treatment options. Recent advancements in transcriptome sequencing technologies have illuminated the molecular intricacies of ESCC tumors, revealing metabolic reprogramming as a prominent feature. Specifically, the Warburg effect, marked by enhanced glycolysis, has emerged as a hallmark of cancer, offering potential therapeutic targets. In this study, we comprehensively analyzed bulk RNA-seq data from ESCC patients, uncovering elevated
expression in ESCC development and a poorer prognosis. Silencing of SRA1 led to a modulation of glycolysis-related products and a shift in PKM2 expression. Our findings shed light on the intricate molecular landscape of ESCC, highlighting SRA1 as a potential therapeutic target to disrupt glycolysis-dependent energy production. This metabolic reprogramming may hold the key to innovative treatment strategies for ESCC, ultimately improving patient outcomes. |
---|---|
ISSN: | 2391-5463 2391-5463 |
DOI: | 10.1515/med-2024-0946 |