An Automatic Shadow Detection Method for VHR Remote Sensing Orthoimagery

The application potential of very high resolution (VHR) remote sensing imagery has been boosted by recent developments in the data acquisition and processing ability of aerial photogrammetry. However, shadows in images contribute to problems such as incomplete spectral information, lower intensity b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2017-05, Vol.9 (5), p.469
Hauptverfasser: Wang, Qiongjie, Yan, Li, Yuan, Qiangqiang, Ma, Zhenling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application potential of very high resolution (VHR) remote sensing imagery has been boosted by recent developments in the data acquisition and processing ability of aerial photogrammetry. However, shadows in images contribute to problems such as incomplete spectral information, lower intensity brightness, and fuzzy boundaries, which seriously affect the efficiency of the image interpretation. In this paper, to address these issues, a simple and automatic method of shadow detection is presented. The proposed method combines the advantages of the property-based and geometric-based methods to automatically detect the shadowed areas in VHR imagery. A geometric model of the scene and the solar position are used to delineate the shadowed and non-shadowed areas in the VHR image. A matting method is then applied to the image to refine the shadow mask. Different types of shadowed aerial orthoimages were used to verify the effectiveness of the proposed shadow detection method, and the results were compared with the results obtained by two state-of-the-art methods. The overall accuracy of the proposed method on the three tests was around 90%, confirming the effectiveness and robustness of the new method for detecting fine shadows, without any human input. The proposed method also performs better in detecting shadows in areas with water than the other two methods.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs9050469