Statistically Significant Differences in AI Support Levels for Project Management between SMEs and Large Enterprises

Background: This article delves into an in-depth analysis of the statistically significant differences in AI support levels for project management between SMEs and large enterprises. The research was conducted based on a comprehensive survey encompassing a sample of 473 SMEs and large Slovenian ente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AI 2024-01, Vol.5 (1), p.136-157
Hauptverfasser: Tominc, Polona, Oreški, Dijana, Čančer, Vesna, Rožman, Maja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: This article delves into an in-depth analysis of the statistically significant differences in AI support levels for project management between SMEs and large enterprises. The research was conducted based on a comprehensive survey encompassing a sample of 473 SMEs and large Slovenian enterprises. Methods: To validate the observed differences, statistical analysis, specifically the Mann–Whitney U test, was employed. Results: The results confirm the presence of statistically significant differences between SMEs and large enterprises across multiple dimensions of AI support in project management. Large enterprises exhibit on average a higher level of AI adoption across all five AI utilization dimensions. Specifically, large enterprises scored significantly higher (p < 0.05) in AI adopting strategies and in adopting AI technologies for project tasks and team creation. This study’s findings also underscored the significant differences (p < 0.05) between SMEs and large enterprises in their adoption and utilization of AI technologies for project management purposes. While large enterprises scored above 4 for several dimensions, with the highest average score assessed (mean value 4.46 on 1 to 5 scale) for the usage of predictive Analytics Tools to improve the work on the project, SMEs’ average levels, on the other hand, were all below 4. SMEs in particular may lag in incorporating AI into various project activities due to several factors such as resource constraints, limited access to AI expertise, or risk aversion. Conclusions: The results underscore the need for targeted strategies to enhance AI adoption in SMEs and leverage its benefits for successful project implementation and strengthen the company’s competitiveness.
ISSN:2673-2688
2673-2688
DOI:10.3390/ai5010008