Artificial Intelligence Analysis of Gene Expression Predicted the Overall Survival of Mantle Cell Lymphoma and a Large Pan-Cancer Series

Mantle cell lymphoma (MCL) is a subtype of mature B-cell non-Hodgkin lymphoma characterized by a poor prognosis. First, we analyzed a series of 123 cases (GSE93291). An algorithm using multilayer perceptron artificial neural network, radial basis function, gene set enrichment analysis (GSEA), and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Healthcare (Basel) 2022-01, Vol.10 (1), p.155
Hauptverfasser: Carreras, Joaquim, Nakamura, Naoya, Hamoudi, Rifat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mantle cell lymphoma (MCL) is a subtype of mature B-cell non-Hodgkin lymphoma characterized by a poor prognosis. First, we analyzed a series of 123 cases (GSE93291). An algorithm using multilayer perceptron artificial neural network, radial basis function, gene set enrichment analysis (GSEA), and conventional statistics, correlated 20,862 genes with 28 MCL prognostic genes for dimensionality reduction, to predict the patients' overall survival and highlight new markers. As a result, 58 genes predicted survival with high accuracy (area under the curve = 0.9). Further reduction identified 10 genes: , , , , and that associated with a poor survival; and , , , , and with a favorable survival. Correlation with the proliferation index (Ki67) was also made. Interestingly, these genes, which were related to cell cycle, apoptosis, and metabolism, also predicted the survival of diffuse large B-cell lymphoma (GSE10846, = 414), and a pan-cancer series of The Cancer Genome Atlas (TCGA, = 7289), which included the most relevant cancers (lung, breast, colorectal, prostate, stomach, liver, etcetera). Secondly, survival was predicted using 10 oncology panels (transcriptome, cancer progression and pathways, metabolic pathways, immuno-oncology, and host response), and was highlighted. Finally, using machine learning, C5 tree and Bayesian network had the highest accuracy for prediction and correlation with the LLMPP MCL35 proliferation assay and RGS1 was made. In conclusion, artificial intelligence analysis predicted the overall survival of MCL with high accuracy, and highlighted genes that predicted the survival of a large pan-cancer series.
ISSN:2227-9032
2227-9032
DOI:10.3390/healthcare10010155